

ASET Science & Engineering Practices (SEP) Tool: Planning and Carrying out Investigations

Planning and Conving out Investigations: Calastists and a six any also and assure at investigations in the field on laboratory condition

Name or ID:

Lesson/Unit Title:	Intended grade:
--------------------	-----------------

SEP 3 collaboratively as well as individually. Their investigations are systematic and require clarifying what counts as data and identifying variables or					
parameters. Engineering investigations identify the effectiveness, efficiency, and durability of designs under different conditions.					
Components of SEP	Mark with "x"	What teacher actions were taken	What are the students doing?		
In this lesson/unit plan, it is clear that	if present in	to facilitate this component for			
students have a structured opportunity to:	lesson	students?			
1) Identify the phenomenon to be investigated					
and purpose of the investigation					
2) Take appropriate parameters into account					
when planning how to investigate a scientif	ic				
question or test a design solution					
3) Make predictions and/or hypotheses about					
the outcome of an investigation*					
G					
4) Conduct an investigation					
T) Conduct an investigation					
5) Collect data to answer a scientific question or					
test a design solution					
6) Evaluate and for revise an evnerimental					
6) Evaluate and/or revise an experimental design					
ucsign					
Notes on Context/Special Considerations (part of school year, differentiation, student developmental considerations, etc.):					

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. *Project Next Gen ASET* was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu

^{*}This component is based on criteria required at the K-2 and 3-5 grade band. Making predictions/hypothesis may happen at the start of an experiment or towards the end depending on the level of experience students have with the content

ASET Grade Band Criteria (Grade Bands: K-2, 3-5)

Science & Engineering Practices

SEP 3: Planning and Carrying out Investigations: Planning and carrying out investigations to answer questions or test solutions to problems in K– 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. In 3-5 they build on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

By the end of the grade band <u>students</u> will have had a structured opportunity to develop an understanding of each of these. Individual lessons or units should include opportunities for <u>students</u> to practice one or more of the following components

		K-2 Grade Band	3-5 Grade Band
1)	Identify the phenomenon to be investigated and purpose of	Students: a. identify and describe the phenomenon under investigation	Students identify and describe: a. the phenomenon under investigation (from a given
	the investigation	(from a given investigation plan or for a plan they will design) b. describe the purpose of the investigation	investigation plan or for a plan they will design) b. the purpose of the investigation
2)	Take appropriate parameters into account when planning how to investigate a scientific question or test a design solution	Students plan a simple investigation that takes into consideration if the design is based on fair tests. As part of planning students describe what they are investigating and key features to consider. In Kinder this is done with guidance from the teacher	Students: a. plan an investigation to answer a scientific question or test a design solution, collaboratively with peers. In the design they consider: i. will the data produced be useful as evidence ii. are they using fair tests iii. which variables are controlled iv. the number of trials needed b. individually will describe the key features of the plan and what materials will be used
3)	Make predictions and/or hypotheses about the outcome of an investigation*	Students make relevant predictions: a. based on prior experiences b. specifying the outcome and reasons	Students make relevant predictions: a. about what would happen if a variable changes b. based on prior experiences and/or observed patterns c. specifying the outcome and reasons
4)	Conduct an investigation	Students conduct a simple investigation (collaboratively with peers) based on the plan they developed to: a. produce data as evidence b. answer a scientific question In Kinder this is done with guidance from the teacher	Students collaboratively conduct an investigation to answer a scientific question or test a design solution: according to the investigation plan they developed to produce data as evidence using fair tests in which variables are controlled in which the number of trials are considered
5)	Collect data to answer a scientific question or test a design solution	Students make observations (firsthand or from media) and/or measurements to: a. collect data that can be used to make comparisons b. determine if a proposed object, tool, or solution solves a problem or meets a goal	Students make observations and/or measurements to: a. serve as the basis for evidence for an explanation of a phenomenon or test a design solution b. test two different models of the same proposed object, tool, or process to determine which better meets criteria for success.
6)	Evaluate and/or revise an experimental design	Students evaluate (i.e. compare and determine which is better) different ways of observing and/or measuring a phenomenon to determine which way <u>can</u> <u>answer a question</u> .	Students evaluate methods and/or tools for collecting data to determine the most appropriate .

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. *Project Next Gen ASET* was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu