

ASET Science & Engineering Practices (SEP) Tool: Using Mathematics and Computational Thinking

Name or ID:

Lesson	/Unit Title: Intended grade:
	Using Mathematics and Computational Thinking: In both science and engineering, mathematics and computation are fundamental tools for
ann =	

SEP 5 representing physical variables and their relationships. They are used for a range of tasks such as constructing simulations; solving equations exactly or approximately; and recognizing, expressing, and applying quantitative relationships. Mathematical and computational approaches enable scientists and engineers to predict the behavior of systems and test the validity of predictions. Mark with "y" What teacher actions were taken What are the students doing? Components of SEP

C	omponents of SEP	Mark with "x"	what teacher actions were taken	what are the students doing?
I	this lesson/unit plan, it is clear that	if present in	to facilitate this component for	
S	udents have a structured opportunity to:	lesson	students?	
1	Identify mathematical and/or computational representation(s) that can be used to interpret and make sense of phenomena or assess solutions to design problems			
2	Apply mathematical and/or computational representation(s) of the phenomenon to identify relationships in the data and/or simulations			
3	Use analysis of the mathematical and/or computational representation(s) as evidence to explain phenomena or assess solutions to design problems			

Notes on Context/Special Considerations (part of school year, differentiation, student developmental considerations, etc.):

ASET Grade Band Criteria (Grade Bands: K-2, 3-5)

Science & Engineering Practices

SEP 5: Using Mathematics and Computational Thinking: Mathematical and computational thinking in K-2 builds on prior experiences and progresses to recognizing that mathematics can be used to describe the natural and designed world(s). In 3-5 they build on K-2 experiences and progress to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative solutions. By the end of the grade band **students** will have had a structured opportunity to develop an understanding of each of these. Individual lessons or units should include opportunities for **students** to practice one or more of the following components

		K-2 Grade Band	3-5 Grade Band
1)	Identify mathematical and/or computational	Students describe, measure, and/or compare	Along with K-2 skills, students create best
	representation(s) that can be used to interpret	quantitative attributes of different objects and	representations to support a phenomenon
	and make sense of phenomena or assess	display the data using simple graphs	
	solutions to design problems		
2)	Apply mathematical and/or computational	Students use counting and comparing numbers to	Along with K-2 skills, students organize simple data
	representation(s) of the phenomenon to	identify and describe patterns in the natural and	sets to reveal patterns that suggest relationships
	identify relationships in the data and/or	designed world(s).	(e.g., cause and effect, structure and function,
	simulations		correlations)
3)	Use analysis of the mathematical and/or	Students use identified patterns or quantitative	Students:
	computational representation(s) as evidence to	data:	a. describe, measure, estimate, and/or graph
	explain phenomena or assess solutions to	a. as evidence to explain a given phenomenon	quantities such as area, volume, weight, and time
	design problems	b. to compare two alternative solutions to a	to address scientific and engineering questions
		problem	and problems
			b. create and/or use graphs and/or charts
			generated from simple algorithms to compare
			alternative solutions to an engineering problem