

ASET Science & Engineering Practices (SEP) Tool: Using Mathematics and Computational Thinking

Name or ID:

Lesson/Unit Title:			Intended grade:			
SEP 5	Using Mathematics and Computational Thinking: In both science and engineering, mathematics and computation are fundamental tools for representing physical variables and their relationships. They are used for a range of tasks such as constructing simulations; solving equations exactly or approximately; and recognizing, expressing, and applying quantitative relationships. Mathematical and computational approaches enable scientists and engineers to predict the behavior of systems and test the validity of predictions.					
Components of SEP		Mark with "x"	What teacher actions were taken	What are the students doing?		
In this lesson/unit plan, it is clear that		if present in	to facilitate this component for			
students have a structured opportunity to:		lesson	students?			
com be us pher	tify mathematical and/or putational representation(s) that can sed to interpret and make sense of nomena or assess solutions to design lems					
repr iden	y mathematical and/or computational esentation(s) of the phenomenon to tify relationships in the data and/or llations					
com	analysis of the mathematical and/or putational representation(s) as ence to explain phenomena or assess tions to design problems					
Notes on Context/Special Considerations (part of school year, differentiation, student developmental considerations, etc.):						

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. *Project Next Gen ASET* was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu

ASET Grade Band Criteria (Grade Bands: 6-8, 9-12)

Science & Engineering Practices								
SEP 5: Using Mathematics and Computational Thinking: Mathematical and computational thinking in 6-8 builds on K-5 experiences and progresses to								
	identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. In 9-12 they build on K-8 experiences and							
progress to using algebraic	progress to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and							
computational tools for sta	computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical							
models of basic assumptions.								
By the end of the grade band students will have had a structured opportunity to develop an understanding of each of these. Individual lessons or units								
should include opportunit	should include opportunities for students to practice one or more of the following components							
	6-8 Grade Band	9-12 Grade Band						
1) Identify	Students will investigate a phenomenon and	Students will investigate a phenomenon and generate/apply						
mathematical and/or	generate/apply mathematical representations to make	mathematical representations to make sense of phenomenon or to test						
computational	sense of phenomenon or to test and compare proposed	and compare proposed solutions to an engineering design problem.						
representation(s)	solutions to an engineering design problem.	To do this students will:						
that can be used to	To do this students will:	a. decide when to use qualitative vs. quantitative data						
interpret and make	a. decide when to use qualitative vs. quantitative data	b. identify and select mathematical concepts and/or processes (such						
sense of phenomena	b. identify and select mathematical concepts and/or	as ratio, rate, percent, basic operations, and algebra) that						
or assess solutions to	processes (such as ratio, rate, percent, basic	represent the phenomena or design problems						
design problems	operations, and simple algebra) that represent the	<i>c.</i> <u>apply techniques of algebra and functions to represent and solve</u>						
	phenomena or design problems	scientific and engineering problems.						
	<i>c.</i> create or utilize a series of ordered steps	d. identify the relevant components/characteristics from given						
	(algorithms) to solve a problem or represent a	mathematical and/or computational representations of						
	phenomenon.	phenomena						
	d. identify the relevant components/characteristics	e. <u>apply ratios, rates, percentages, and unit conversions in the</u>						
	from given mathematical and/or computational	<u>context of complicated measurement problems involving</u> <u>quantities with derived or compound units (such as mg/mL</u>						
	representations of phenomena	<u>quantities with derived or compound units (such as mg/mL, kg/m3, acre-feet, etc.)</u>						
		<u>kg/1113, all E-1001, ett. j</u>						

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. *Project Next Gen ASET* was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu

2)	Apply mathematical and/or computational representation(s) of the phenomenon to identify relationships in the data and/or simulations	 Students will model phenomena or solutions to engineering design problem using mathematical concepts and/or processes. To do this students will: a. apply mathematical concepts and/or processes (as identified in 1.b or given by the instructor) to model scientific and engineering questions and/ or problems. b. use digital tools (e.g., computers) to analyze very large data sets for patterns and trends and transform data between various tabular and graphical forms c. use digital tools and/or mathematical concepts and arguments to represent phenomenon and relationships among data and/or underlying mechanism(s), or to compare solutions to an engineering design problem These include identifying relationships within data and/or simulations or correlations with physical observations 	 Students will model phenomena or solutions to engineering design problem using mathematical concepts and/or processes. To do this students will: a. apply mathematical concepts and/or processes (as identified in 1.b or given by the instructor) to model scientific and engineering questions and/ or problems. b. use digital tools (e.g., computers) to analyze very large data sets for patterns and trends and transform data between various tabular and graphical forms c. create and/or revise a computational model or simulation to represent phenomenon, designed device, process, or, system and relationships among data and/or underlying mechanism(s), or to compare solutions to an engineering design problem d. use simple limit cases to test mathematical expressions, computer programs, algorithms, or simulations of a process or system to see if a model "makes sense" by comparing the outcomes with what is known about the real world These include identifying relationships within data and/or simulations or correlations with physical observations
3)	Use analysis of the mathematical and/or computational representation(s) as evidence to explain phenomena or assess solutions to design problems	 Students will: a. use mathematical representations to describe and/or support scientific conclusions and design solutions. b. identify relationships or explanations for phenomena that they will support The analysis of data includes consideration of: Patterns in data Predicting the effect of change in parameters or inform changes in an initial testing phase Synthesis of analysis with related scientific information 	 Students will: a. use mathematical, <u>computational, and/or algorithmic</u> <u>representations of phenomena or design solutions to describe</u> <u>and/or support claims and/or explanations</u> b. identify relationships or explanations for phenomena that they will support The analysis of data includes consideration of: Patterns in data Predicting the effect of change in parameters or inform changes in an initial testing phase Synthesis of analysis with related scientific information