

## ASET Science & Engineering Practice (SEP) Tool: Using Mathematics and Computational Thinking

Name or ID:

**Lesson/Unit Title:** 

| Intended Grade:                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                |                              |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Indicate<br>A single                                                                                    | lesson will most likely not address each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of the con      | and then, if it is present, fill in the right 2 column<br>aponents below.<br>ate they should be used in sequence, they are sin |                              |  |
| SEP 5                                                                                                   | <b>Using Mathematics and Computational Thinking:</b> In both science and engineering, mathematics and computation are fundamental tools for representing physical variables and their relationships. They are used for a range of tasks such as constructing simulations; solving equations exactly or approximately; and recognizing, expressing, and applying quantitative relationships. Mathematical and computational approaches enable scientists and engineers to predict the behavior of systems and test the validity of predictions. |                 |                                                                                                                                |                              |  |
| Components of SEP In this lesson/unit plan, it is clear that students have a structured opportunity to: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Present?<br>Y/N | What teacher actions were taken to facilitate this component for students?                                                     | What are the students doing? |  |
| ŕ                                                                                                       | Identify mathematical and/or computational representation(s) that can be used to interpret and make sense of phenomena or assess solutions to design problems                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                |                              |  |
| -                                                                                                       | Apply mathematical and/or computational representation(s) of the phenomenon to identify relationships in the data and/or simulations                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                |                              |  |
| -                                                                                                       | Use analysis of the mathematical and/or computational representation(s) as evidence to explain phenomena or assess solutions to design problems                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                |                              |  |

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. *Project Next Gen ASET* was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu



## **ASET Grade Band Criteria (Grade Band: 6-8)**

## **Science & Engineering Practices**

SEP 5: Using Mathematics and Computational Thinking: Mathematical and computational thinking in 6-8 builds on K-5 experiences and progresses to identifying patterns in large data sets, using simple statistical features, and using mathematical concepts to support explanations and arguments.

| By the end of the grade band students will have had a structured opportunity to develop an understanding of each of these. Individual lessons or units should include |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| opportunities for <u>students</u> to practice one or more of the following components                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Identify mathematical and/or computational representation(s) that can be used to interpret and make sense of phenomena or assess solutions to design problems         | Students will investigate a phenomenon and generate/apply mathematical representations to make sense of phenomenon or to test and compare proposed solutions to an engineering design problem.  To do this students will:  a. decide when to use qualitative vs. quantitative data  b. identify and select mathematical concepts and/or processes (such as ratio, rate, percent, basic operations, and simple algebra) that represent the phenomena or design problems  c. create or utilize a series of ordered steps (algorithms) to solve a problem or represent a phenomenon.  d. identify the relevant components/characteristics from given mathematical and/or computational representations of phenomena                                                                                                    |  |  |  |  |
| Apply mathematical and/or computational representation(s) of the phenomenon to identify relationships in the data and/or simulations                                  | Students will model phenomena or solutions to engineering design problem using mathematical concepts and/or processes. To do this students will:  a. apply mathematical concepts and/or processes (as identified in 1.b or given by the instructor) to model scientific and engineering questions and/or problems.  b. use digital tools (e.g., computers) to analyze very large data sets for patterns and trends and transform data between various tabular and graphical forms  c. use digital tools and/or mathematical concepts and arguments to represent phenomenon and relationships among data and/or underlying mechanism(s), or to compare solutions to an engineering design problem  These include identifying relationships within data and/or simulations or correlations with physical observations |  |  |  |  |
| 3) Use analysis of the mathematical and/or computational representation(s) as evidence to explain phenomena or assess solutions to design problems                    | Students will:  a. use mathematical representations to describe and/or support scientific conclusions and design solutions.  b. identify relationships or explanations for phenomena that they will support  The analysis of data includes consideration of:  Patterns in data  Predicting the effect of change in parameters or inform changes in an initial testing phase                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

©2015 California State University East Bay All Rights Reserved. Any unauthorized reprint or use of this document is prohibited under federal law. Project Next Gen ASET was supported by a grant to the California State University East Bay by the National Science Foundation Discovery Research K12, Award No. DRL-1418440. PI: michele.korb@csueastbay.edu or contact corinne.lardy@csus.edu, michelle.sinapuelas@csueastbay.edu

Synthesis of analysis with related scientific information